Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicology ; 33(1): 66-84, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38183574

RESUMO

Species-specific anatomical and morphological characteristics of Pinus sylvestris and Larix sibirica needles were studied at different levels of tree stand pollution by aluminum smelter emissions. The anatomical characteristics of the needle were studied using light microscopy. The level of tree stand pollution was determined using the cluster analysis outcomes of the pollutant elements content (fluorine, sulfur, and heavy metals) in the needles. Four levels of tree stand pollution were separated: low, moderate, high, and critical, as well as background tree stand in unpolluted areas. It was found that the state of tree phytomass deteriorated with increasing levels of pollution (from low to critical): pine crown defoliation increased to 85%, and larch defoliation increased to 65%. The life span of pine needles was reduced to 2-3 years, with a background value of 6-7 years. The change of morphological parameters was more pronounced in P. sylvestris: the weight and length of the 2-year-old shoot decreased by 2.7-3.1 times compared to the background values; the weight of needles on the shoot and the number of needle pairs on the shoot-by 1.9-2.1 times. The length of the needle and shoot and the number of L. sibirica brachyblasts decreased by 1.8-1.9 times. The anatomical parameters of the needle also changed to a greater extent in P. sylvestris. Up to the high level of tree pollution, we observed a decrease in the cross-sectional area of the needle, central cylinder, vascular bundle, area and thickness of mesophyll, number and diameter of resin ducts by 18-66% compared to background values. At the critical pollution level, when the content of pollutant elements in pine needles reached maximum values, the anatomical parameters of the remaining few green needles were close to background values. In our opinion, this may be due to the activation of mechanisms aimed at maintaining the viability of trees. A reduction in thickness and area of assimilation tissue in the L. sibirica needle was detected only at the critical pollution level. An upward trend in these parameters was found at low, medium, and high pollution levels of tree stand, which may indicate an adaptive nature. The results suggested that at a similar pollution level of trees, the greatest amount of negative anatomical and morphological changes were recorded in pine needles, which indicates a greater sensitivity of this species to technogenic emissions.


Assuntos
Poluentes Ambientais , Larix , Pinus sylvestris , Pinus , Alumínio , Pinus/fisiologia , Árvores
2.
Ecotoxicology ; 31(10): 1492-1505, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36445649

RESUMO

Changes in the antioxidant protection system of Larix sibirica Ledeb at different pollution levels caused by emissions from a large aluminum smelter (BrAS) have been studied. We revealed that the content of peroxide (H2O2) in the needles is a reliable marker of oxidative stress in the trees under pollution. The crucial role of non-enzymatic components, in particular, proline, phenolic compounds, ascorbic acid, glutathione, in reducing the level of free radicals in the needles cells was found. Proline concentration in the needles significantly rises with the increase in pollution levels from low to high. Under critical level pollution, it decreases by 40% compared to the background. The total content of ascorbic acid (ASC) in the needles of polluted trees varies slightly; however, there are significant changes in its various forms. With an increase in pollution to a high level, the content of the reduced form of ASC in the needles increases by 1.5-2.9 times compared to the background content. At a critical level of pollution, the total level of ascorbic acid and its reduced form falls, the content of the oxidized form reaches minimum values. The total content of phenolic compounds in the needles increased by 50-55%, concentration of flavonoids by 1.5-1.8 times, catechins by 1.9-2.5 times, proanthocyanidins by 45% compared to the background level under low, moderate, high pollution, whereas under critical pollution their content decreased. The absolute concentration of the reduced form glutathione in the needles falls by 1.9-3.0 times, the oxidized form increases by 1.5-2.0 times compared to the background. The ratio of reduced glutathione to oxidized glutathione decreased, especially during critical pollution. The data obtained show significant activation of Siberian larch biochemical protection at low, moderate and high levels of pollution by the aluminum smelter emissions. At a critical levels of contamination, a significant depletion of the pool of low-molecular antioxidants was observed.


Assuntos
Antioxidantes , Larix , Alumínio , Peróxido de Hidrogênio , Peso Molecular , Ácido Ascórbico , Glutationa , Prolina
3.
Ecotoxicology ; 30(10): 2083-2095, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34546442

RESUMO

Changes in the fatty acid (FA) composition of total lipids of Pinus sylvestris needles at different pollution levels caused by emissions from a large aluminum smelter (BrAS) have been studied. In the needles of trees from unpolluted (background) territories, the FA spectrum is represented by 24 acids with prevalence of unsaturated FAs (71.6%). The main unsaturated FA are represented by oleic (C18: 1ω9), linoleic (C18: 2ω6), and α-linolenic (C18: 3ω3) acids. Under the influence of BrAS emissions, the total amount of identified FAs in the needles and the proportion of unsaturated FAs decrease, while the fraction of saturated FAs, on the contrary, increases from 25.4% in unpolluted needles to 33.2% in polluted ones. The content of palmitic FA (C16:0) in the needles exceeds background values by 1.5 times, behenic acid (C22:0) - by 1.6-2.5 times, arachidic acid (C20:0) - by 1.5 times, palmitic margaric acid (C17:0) - by 1.5-2.3 times. These FAs play the important role in the protection of plant membranes from the effects of abiotic stress factors, making them less permeable. The sum of short-chain saturated FAs (C12:0, C14:0, C15:0) increase by 4.8 times in needles of trees that are highly polluted. Pentadecanoic (C15:0) acid is found in the needles only in the background areas and at the low pollution level. With a more severe pollution, C15:0 is not identified, but lauric acid with the cis-configuration of double bonds in the structure (izo-C12:0) appears. The presence of "relict" ∆5-polymethylene FAs in the composition of pine needle membrane lipids is determined. In the background areas, they account for 12.9% of the total FAs. With the industrial pollution intensification, their total content increases and reaches 14.1%. ∆5-polymethylene FAs are also able to protect membranes against negative influences. Thus, changes in the quantitative and qualitative FA composition of pine needle total lipids indicate the activation of the stabilization mechanisms of membrane lipids due to their tight packing in a bilayer. It is one of the adaptive reactions of Pinus sylvestris in response to the impact of the aluminum industry emissions.


Assuntos
Alumínio , Pinus sylvestris , Ácidos Graxos , Ácidos Graxos Insaturados , Árvores
4.
Environ Sci Pollut Res Int ; 28(44): 62605-62615, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34195945

RESUMO

Element contents in assimilation organs of trees are an essential component of a comprehensive forest condition diagnosis. They allow conclusions about the current nutritional status of trees and estimate the main risks for a sustainable forest ecosystem management in the future. The purpose of this research was to study the effect of highly aggressive fluorine-containing emissions from a large aluminum smelter on the nutritional status of coniferous trees Larix sibirica and Pinus sylvestris. Studies carried out in the background areas showed that the both species have the main part of the elements in optimal quantities. A deficiency is noted for potassium. The content of N, K, Mg, Na, S, F, Cu, Co, and Cd in L. sibirica needles was 1.2-5.2 times higher than in P. sylvestris needles. Under the influence of the aluminum smelter emissions, fluorine concentration in the tree needles increases by 13.8-30.0 times; sulfur by 2.9-3.6 times; heavy metals by 2.0-5.1 times; and nitrogen, calcium, magnesium, and sodium by 1.2-3.6 times, especially in the industrial zone and 5 km far from it. With the increasing distance from the smelter, the content of pollutants in the tree needles decreases. Values close to background are observed at a distance of over 40 km. According to index biogeochemical transformation, the elemental composition of P. sylvestris needles undergoes greater changes than L. sibirica ones under the influence emissions from the aluminum smelter. Changes in the element concentration of the tree needles caused by the impact of industrial emissions lead to a restructuring of the elements accumulation rows, as well as to a violation of the element quantitative ratios. Change of N:P:K, Ca:K, Ca:P, P:S, P:F, Mn:F, and Mn:Fe ratios points to serious nutrient imbalances in coniferous trees, which may reduce their vitality and growth in the long run.


Assuntos
Poluentes do Solo , Traqueófitas , Alumínio , Ecossistema , Monitoramento Ambiental , Estado Nutricional , Poluentes do Solo/análise , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...